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Consider the Navier-Stokes equation on T3:

∂tu + u · ∇u =ν∆u −∇p + ξ, divu = 0

u(0) =u0

(1)

u(t, x) ∈ R3: the velocity field at time t and position x ,

p(t, x): the pressure,

ν > 0: the viscosity constant

ξ: trace-class noise
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Introduction

Derivation of Navier-Stokes system: Newton’s law

Suppose u = u(t, x(t)) and ρ: the density

d

dt
u(t) = ∂tu︸︷︷︸

variation

+ u · ∇u︸ ︷︷ ︸
convection

= ν∆u︸︷︷︸
Diffusion

− ∇p︸︷︷︸
Internal source

+ f︸︷︷︸
External source

,

∂tρ+∇ · (ρu) = 0︸ ︷︷ ︸
mass conservation

⇒ if ρ=constant divu = 0

u(0) = u0.

Motivation of Gaussian noise

stochastic reduction

regularization by noise

turbulence Kolmogorov (’41) theory
Zeroth law of turbulence: the inviscid limit ν → 0

ε = lim inf
ν→0

(
ν〈|∇uν |2〉

)
> 0,

〈 · 〉: integration w.r.t. spatial variable and stationary measure µν

Kolmogorov (’41) theory: 2/3 law, 4/5 law.
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Introduction

∂tu + u · ∇u = ν∆u −∇p + ξ, Re ∼ 1/ν
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Deterministic: [Leray34], [Kato, Fujita62], [Temam84], [Constantin, Foias88]
[Cafarelli,Kohn, Nirenberg84], [Fefferman 00], [Koch, Tataru01], [Zhang],...

The global existence of weak solutions has been obtained in all dimensions.

Existence and smoothness of solutions in the three dimensional case remains
open (the Millennium Prize problem)./ Small initial data

[Buckmaster, Vicol AOM19]: Non-uniqueness of analytic weak solutions

[Albritton, E. Brué, M. Colombo. AOM22] non-uniqueness of Leray solutions
for some force
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Naiver-Stokes equations driven by trace-class noise

Naiver-Stokes equations driven by trace-class noise
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Naiver-Stokes equations driven by trace-class noise

Different notions of solutions

Martingale solutions/Probabilistically weak solutions: probability measure on
the canonical space C ([0,∞) : H−3)

Probabilistically strong solutions: the solutions are adapted to the filtration
generated by the noise

Relations: ∃ probabilitically strong solutions + uniqueness in law
⇐⇒Yamada-Watanabe

Engelbert, Cherny Pathwise uniqueness + existence of martingale solutions

Known result:

Leray martingale Markov solutions to stochastic 3D Navier-Stokes have been
constructed [Flandoli, Romito PTRF08]
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Naiver-Stokes equations driven by trace-class noise

Convex integration for N-S

Convex integration: iteration procedure a pair (vq, R̊q) is constructed solving
the following system

∂tvq −∆vq + div(vq ⊗ vq) +∇pq = divR̊q divvq = 0.

Key step: Let wq+1 = vq+1 − vq, then we have

divR̊q+1 = −∆wq+1 + ∂twq+1 + div(vq ⊗ wq+1 + wq+1 ⊗ vq)︸ ︷︷ ︸
linear error

+ div
(

wq+1 ⊗ wq+1 + R̊q

)
︸ ︷︷ ︸
oscillation error: cancelation

+∇pq+1 −∇pq.

wq+1 ∼
∑
ξ aξ(R̊q)Wξ, where Wξ is intermittent jets/Beltrami waves/Mikado

waves.

The space concentration ensure the linear error is small in L1∫
Wξ ⊗Wξ ' 1 and aξ(R̊q) ≈

√
−R̊q oscillates slowly
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Naiver-Stokes equations driven by trace-class noise

Nonuniqueness in law for Stochastic 3D Navier-Stokes/Euler equations

Problem 1: Non-uniqueness in law hold?

1 Regularization by noise:
The ODE

dXt = |Xt |αdt, X0 = 0, α ∈ (0, 1)

has infinitely many solutions
The SDE

dXt = |Xt |αdt + dBt

has a unique probablistically strong solution

2 Example:
dXt = sign(Xt)dBt

Pathwise uniqueness does not hold: If X is a solution then −X is also a solution.
Uniqueness in law hold

Theorem (Hofmanová, Zhu, Z. 19/ CPAM22)

Non-uniqueness in law holds for the stochastic 3D Navier- Stokes/ Euler system.
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Naiver-Stokes equations driven by trace-class noise

Nonuniqueness of Markov solutions/Global probabilistically strong solutions

Problem 2: existence of global probabilistically strong solutions

Difficulty: Control the stochastic integral by taking expectation ⇒ Martingale
solution
Transformed to random PDE and control ω-wise + compactness ⇒ loss of
adaptedness.

Theorem (Hofmanová, Zhu, Z. AOP22+)

Let u0 ∈ L2 P-a.s. be a divergence free initial condition. There exist infinitely
many probabilistically strong and analytically weak solutions to the SNS on
[0,∞).

The Markov solutions to the SNS system are not unique.

[Chen, Dong, Z. 22] Sharp nonuniqueness and global probabilistically strong
solutions in higher dimensions/ Euler equations

[Lü, Z. 22] Global probabilistically strong solutions for power law equations
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Naiver-Stokes equations driven by trace-class noise

Ergodic hypothesis

basic assumption in turbulence theory:

lim
T→∞

1

T

∫ T

0

F (u(t))dt =

∫
Fdν

the measure is invariant- Statistically stationary solutions:
Law[u(t + ·)] =Law[u(·)]

ergodic stationary solution

lim
T→∞

1

T

∫ T

0

F (u(t))dt = EF (u(0))

Known result:

2d Navier-Stokes: Uniqueness of invariant measure [Hairer, Mattingly AOM06]

3d Navier-Stokes with non-degenerate noise: Every Markov selection has a
unique invariant measure [Flandoli, Romito PTRF08]
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Naiver-Stokes equations driven by trace-class noise

Nonuniqueness of stationary solutions

Problem 3: Existence of stationary solution to stoch. Euler unknown due to lack
of uniform dissipation

Theorem (Hofmanová, Zhu, Z. 22)

There exist

1 infinitely many stationary solutions;

2 infinitely many ergodic stationary solutions;

to the stochastic 3D Navier–Stokes and Euler equations.

Theorem (Hofmanová, Zhu, Z. 22)

For any νn → 0, ∃ stationary solutions un to SNS with ν = νn so that L[un],
n ∈ N, is tight in C (R; L2

σ) and every accumulation point is a stationary solution
to the stochastic Euler equations.

Idea of proof: Stochastic convex integration

sup
ν

sup
s∈R

(E sup
s≤t≤s+1

‖u(t)‖2
Hϑ + E‖u(t)‖2

Cϑ([s,s+1];L2)) <∞.

Xiangchan Zhu (CAS) stochastic N-S equation 13 / 15



Naiver-Stokes equations driven by trace-class noise

Nonuniqueness of stationary solutions

Problem 3: Existence of stationary solution to stoch. Euler unknown due to lack
of uniform dissipation

Theorem (Hofmanová, Zhu, Z. 22)
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There exist

1 infinitely many stationary solutions;

2 infinitely many ergodic stationary solutions;

to the stochastic 3D Navier–Stokes and Euler equations.

Theorem (Hofmanová, Zhu, Z. 22)
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Naiver-Stokes equations driven by trace-class noise

Anomalous dissipation

Theorem (Hofmanová, Zhu, Z. 22)

For any ε > 0, ∃ νn → 0 and stationary processes (un, R̊n) ∈ C (R; H1)× C (R; L1)
satisfying the following stochastic Navier–Stokes–Reynolds equations

dun + div(un ⊗ un)dt +∇Pn dt = νn∆un dt + divR̊n dt + dB,

lim
n→∞

E

[
sup

0≤s≤1
‖R̊n(s)‖L1

]
= 0,

and

lim inf
n→∞

νnE‖∇un‖2
L2 ≥ ε+

1

2
tr(GG∗).

Furthermore, the laws L[un], n ∈ N, is tight in C (R; L2
σ) and every accumulation

point is a stationary solution to the stochastic Euler equations.

see [Brue, De Lellis 22]
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Thank you !
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