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Consider the Navier-Stokes equation on T3:

Oru+u-Vu=vAu—Vp+¢, divu=0
u(0) =up

u(t, x) € R3: the velocity field at time t and position x,

p(t,x): the pressure,

o v > 0: the viscosity constant

&: trace-class noise
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Derivation of Navier-Stokes system: Newton's law

Suppose u = u(t,x(t)) and p: the density

d

—u(t)= 0w + u-Vu = vAu — Vp + f ,

dt ~— —— —~—~ ~— ~~
variation  convection Diffusion  [pternal source  External source

Oep+ V - (pu) = 0 = if p=constant iy, — 0

mass conservation

u(0) = up.
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Derivation of Navier-Stokes system: Newton's law

Suppose u = u(t,x(t)) and p: the density

d

—u(t)= 0w + u-Vu = vAu — Vp + f ,

dt ~— N—— ~— ~— ~~
variation  convection Diffusion  [pternal source  External source

Oep+ V - (pu) = 0 = if p=constant iy, — 0

mass C()rlser\"dti()n
u(0) = up.

Motivation of Gaussian noise

@ stochastic reduction
e regularization by noise
o turbulence Kolmogorov ('41) theory
Zeroth law of turbulence: the inviscid limit v — 0

i 2
€= |I£nJgf (1/<|Vuy| )) >0,

(+): integration w.r.t. spatial variable and stationary measure p”
Kolmogorov ('41) theory: 2/3 law, 4/5 law.
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Deterministic: [Leray34], [Kato, Fujita62], [Temam84], [Constantin, Foias88]
[Cafarelli,Kohn, Nirenberg84], [Fefferman 00], [Koch, Tataru01], [Zhang],...

o The global existence of weak solutions has been obtained in all dimensions.

o Existence and smoothness of solutions in the three dimensional case remains
open (the Millennium Prize problem)./ Small initial data

o [Buckmaster, Vicol AOM19]: Non-uniqueness of analytic weak solutions

o [Albritton, E. Brué, M. Colombo. AOM22] non-uniqueness of Leray solutions
for some force
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Naiver-Stokes equations driven by trace-class noise

Different notions of solutions

e Martingale solutions/Probabilistically weak solutions: probability measure on
the canonical space C([0,00) : H™3)

o Probabilistically strong solutions: the solutions are adapted to the filtration
generated by the noise
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Different notions of solutions

e Martingale solutions/Probabilistically weak solutions: probability measure on
the canonical space C([0,00) : H™3)

o Probabilistically strong solutions: the solutions are adapted to the filtration
generated by the noise

o Relations: 3 probabilitically strong solutions + uniqueness in law

Yamada-Watanabe H : . . .
< Engelbort, Cherny Pathwise uniqueness + existence of martingale solutions
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Different notions of solutions

e Martingale solutions/Probabilistically weak solutions: probability measure on
the canonical space C([0,00) : H™3)
o Probabilistically strong solutions: the solutions are adapted to the filtration
generated by the noise
o Relations: 3 probabilitically strong solutions + uniqueness in law
= pamaia WVelinabe Pathwise uniqueness + existence of martingale solutions
Known result:

o Leray martingale Markov solutions to stochastic 3D Navier-Stokes have been
constructed [Flandoli, Romito PTRFO08]
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Naiver-Stokes equations driven by trace-class noise

Convex integration for N-S

o Convex integration: iteration procedure a pair (vg, Ry) is constructed solving
the following system

Orvg — Avg + div(vg ® vq) + Vpg = div/o?q divvg = 0.
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Convex integration for N-S

°

o Convex integration: iteration procedure a pair (vg, Rq) is constructed solving
the following system

Orvg — Avg + div(vg ® vq) + Vpg = div/o?q divvg = 0.
o Key step: Let wgq1 = vg41 — Vg, then we have

diVﬁ\’q+]_ = —AwWgi1 + Orwgr1 + div(vy ® Wetr1 + Wop1 ® vg)

linear error

+ div (Wq+1 & Wqg+t1 + Rq) +qu+]_ — qu

oscillation error: cancelation
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Convex integration for N-S

°

o Convex integration: iteration procedure a pair (vg, Rq) is constructed solving
the following system

Orvg — Avg + div(vg ® vq) + Vpg = div/o?q divvg = 0.
o Key step: Let wgq1 = vg41 — Vg, then we have

diVﬁ\’q+]_ = —AwWgi1 + Orwgr1 + div(vy ® Wetr1 + Wop1 ® vg)

linear error

+ div (Wq+1 & Wqg+t1 + Rq) +qu+]_ — qu

oscillation error: cancelation

Woi1 ~ D¢ ac(Ry) W, where W is intermittent jets/Beltrami waves/Mikado
waves.

o The space concentration ensure the linear error is small in L}
o [We® We ~1 and ag(fo?q) ~ \/flo?q oscillates slowly
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Nonuniqueness in law for Stochastic 3D Navier-Stokes/Euler equations

Problem 1: Non-uniqueness in law hold?
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Nonuniqueness in law for Stochastic 3D Navier-Stokes/Euler equations

Problem 1: Non-uniqueness in law hold?
@ Regularization by noise:
e The ODE
dXt = |)<1~‘Oédt7 X() = 07 [eAS (0, 1)

has infinitely many solutions

e The SDE

dXt = ‘thadt Jr dBt

has a unique probablistically strong solution

Xiangchan Zhu (CAS) stochastic N-S equation 10 / 15



Naiver-Stokes equations driven by trace-class noise

Nonuniqueness in law for Stochastic 3D Navier-Stokes/Euler equations

Problem 1: Non-uniqueness in law hold?

@ Regularization by noise:
o The ODE
dXt = |)<1~‘Oédt7 X() = 07 a € (0, 1)
has infinitely many solutions
e The SDE
dXt = ‘Xt|adt Jr dBt
has a unique probablistically strong solution

@ Example:
dXt = Sign(Xt)dBt

o Pathwise uniqueness does not hold: If X is a solution then —X is also a solution.
o Uniqueness in law hold
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Nonuniqueness in law for Stochastic 3D Navier-Stokes/Euler equations

Problem 1: Non-uniqueness in law hold?

@ Regularization by noise:
o The ODE
dXt = |)<1~‘Oédt7 X() = 07 [eAS (0, 1)
has infinitely many solutions
e The SDE
dXt = ‘thadt Jr dBt
has a unique probablistically strong solution

@ Example:
dXt = Sign(Xt)dBt

o Pathwise uniqueness does not hold: If X is a solution then —X is also a solution.
o Uniqueness in law hold

Theorem (Hofmanovd, Zhu, Z. 19/ CPAM22)
Non-uniqueness in law holds for the stochastic 3D Navier- Stokes/ Euler system. J
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Nonuniqueness of Markov solutions/Global probabilistically strong solutions

Problem 2: existence of global probabilistically strong solutions
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Problem 2: existence of global probabilistically strong solutions

Difficulty: Control the stochastic integral by taking expectation = Martingale
solution
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Problem 2: existence of global probabilistically strong solutions

Difficulty: Control the stochastic integral by taking expectation = Martingale
solution

Transformed to random PDE and control w-wise + compactness = loss of
adaptedness.
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Nonuniqueness of Markov solutions/Global probabilistically strong solutions

Problem 2: existence of global probabilistically strong solutions

Difficulty: Control the stochastic integral by taking expectation = Martingale
solution

Transformed to random PDE and control w-wise + compactness = loss of
adaptedness.

Theorem (Hofmanovd, Zhu, Z. AOP22+)

o Let uyp € L? P-a.s. be a divergence free initial condition. There exist infinitely
many probabilistically strong and analytically weak solutions to the SNS on
[0, 00).
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Nonuniqueness of Markov solutions/Global probabilistically strong solutions

Problem 2: existence of global probabilistically strong solutions

Difficulty: Control the stochastic integral by taking expectation = Martingale
solution

Transformed to random PDE and control w-wise + compactness = loss of
adaptedness.

Theorem (Hofmanovd, Zhu, Z. AOP22+)

o Let uyp € L? P-a.s. be a divergence free initial condition. There exist infinitely
many probabilistically strong and analytically weak solutions to the SNS on
[0, 00).

e The Markov solutions to the SNS system are not unique.

o [Chen, Dong, Z. 22] Sharp nonuniqueness and global probabilistically strong
solutions in higher dimensions/ Euler equations

o [Li, Z. 22] Global probabilistically strong solutions for power law equations
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Ergodic hypothesis

@ basic assumption in turbulence theory:

lim —/ dt—/FdV
T—oo T
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@ basic assumption in turbulence theory:
1 T
lim = F = | F
Jim _,_/0 (u(t))dt / dv

o the measure is invariant- Statistically stationary solutions:
Law[u(t + )] =Law[u(+)]
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Ergodic hypothesis

@ basic assumption in turbulence theory:
1 T
lim = F = | F
Jim _,_/0 (u(t))dt / dv

o the measure is invariant- Statistically stationary solutions:
Law[u(t + )] =Law[u(+)]
o ergodic stationary solution

jim %/O F(u(t))dt = EF(u(0))

T—oo

Known result:
o 2d Navier-Stokes: Uniqueness of invariant measure [Hairer, Mattingly AOMO6]

o 3d Navier-Stokes with non-degenerate noise: Every Markov selection has a
unique invariant measure [Flandoli, Romito PTRF08]
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Nonuniqueness of stationary solutions

Problem 3: Existence of stationary solution to stoch. Euler unknown due to lack
of uniform dissipation
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Nonuniqueness of stationary solutions

Problem 3: Existence of stationary solution to stoch. Euler unknown due to lack
of uniform dissipation

Theorem (Hofmanovd, Zhu, Z. 22)
There exist
@ infinitely many stationary solutions;
@ infinitely many ergodic stationary solutions;

to the stochastic 3D Navier-Stokes and Euler equations.
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Problem 3: Existence of stationary solution to stoch. Euler unknown due to lack
of uniform dissipation

Theorem (Hofmanovd, Zhu, Z. 22)
There exist
@ infinitely many stationary solutions;
@ infinitely many ergodic stationary solutions;

to the stochastic 3D Navier-Stokes and Euler equations.

Theorem (Hofmanovd, Zhu, Z. 22)

For any v, — 0, 3 stationary solutions u, to SNS with v = v, so that L[u,],
n €N, is tight in C(R; L2) and every accumulation point is a stationary solution
to the stochastic Euler equations.
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Nonuniqueness of stationary solutions

Problem 3: Existence of stationary solution to stoch. Euler unknown due to lack
of uniform dissipation

Theorem (Hofmanovd, Zhu, Z. 22)
There exist
@ infinitely many stationary solutions;

@ infinitely many ergodic stationary solutions;

to the stochastic 3D Navier-Stokes and Euler equations.

Theorem (Hofmanovd, Zhu, Z. 22)

For any v, — 0, 3 stationary solutions u, to SNS with v = v, so that L[u,],
n €N, is tight in C(R; L2) and every accumulation point is a stationary solution
to the stochastic Euler equations.

Idea of proof: Stochastic convex integration

supsup(E sup [u(t) 50 + Ellu(t)][Zo( s411:02) < 00
v scR  s<t<s+1
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Anomalous dissipation

Theorem (Hofmanovd, Zhu, Z. 22)

For any € > 0, 3 v, — 0 and stationary processes (u,, R,) € C(R; H') x C(R; L)
satisfying the following stochastic Navier-Stokes—Reynolds equations

du, + div(u, ® u,)dt + VP, dt = vp,Au, dt + divR, dt + dB,

lim E [ sup ||i’?n(s)||u] =0,
1

n—o0 0<s<

and

. 1
|I’7I'2IOI1‘FV,,EHVU,,H%2 >e+ Etr(GG*).
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Anomalous dissipation

Theorem (Hofmanovd, Zhu, Z. 22)

For any € > 0, 3 v, — 0 and stationary processes (u,, R,) € C(R; H') x C(R; L)
satisfying the following stochastic Navier-Stokes—Reynolds equations

du, + div(u, ® u,)dt + VP, dt = vp,Au, dt + divR, dt + dB,

lim E [ sup ||i’?n(s)||u] =0,
n—oo  |o<s<1

and
. 1
lLrgLQfV"EHVU"”EQ >e+ Etr(GG*).

Furthermore, the laws L[u,], n € N, is tight in C(R; L2) and every accumulation
point is a stationary solution to the stochastic Euler equations.

see [Brue, De Lellis 22]
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Thank you |
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